
A Dynamic Tracing Mechanism for Performance

Analysis of OpenMP Applications

Jordi Caubet1, Judit Gimenez1, Jesus Labarta?1, Luiz DeRose2, and Je�rey

Vetter??3

1 European Center for Parallelism of Barcelona

Department of Computer Architecture

Technical University of Catalonia

Barcelona, Spain

fjordics, judit, jesusg@cepba.upc.es
2 Advanced Computing Technology Center

IBM T. J. Watson Research Center

Yorktown Heights, NY, USA

laderose@us.ibm.com
3 Center for Applied Scienti�c Computing

Lawrence Livermore National Laboratory

Livermore, CA, USA

vetter@llnl.gov

Abstract. In this paper we present OMPtrace, a dynamic tracing mech-

anism that combines traditional tracing with dynamic instrumentation

and access to hardware performance counters to create a powerful tool

for performance analysis and optimization of OpenMP applications. Per-

formance data collected with OMPtrace is used as input to the Paraver

visualization tool for detailed analysis of the parallel behavior of the ap-

plication. We demonstrate the usefulness of OMPtrace and the power

of Paraver for tuning OpenMP applications with a case study running

the US DOE ASCI Sweep3D benchmark on the IBM SP system at the

Lawrence Livermore National Laboratory.

1 Introduction

OpenMP has emerged as the standard for shared memory parallel programming,

allowing users to write applications that are portable across most shared mem-

ory multiprocessors. However, in order to achieve high performance on these

systems, application developers still face a large number of application perfor-

mance problems, such as load imbalance and false sharing. These performance

? This work was partially supported by IBM under a Shared University Research grant

and by the Spanish Ministry of Education (CICYT) under contract TIC98-0511
?? This work was performed under the auspices of the U.S. Dept. of Energy by Univer-

sity of California LLNL under contract W-7405-Eng-48. LLNL Document Number

UCRL-JC-142770.



problems make application tuning complex and often counter-intuitive. More-

over, these problems are hard to detect without the help of performance tools

that have low intrusion cost and are able to correlate dynamic performance data

from both software and hardware measurements.

In this paper, we describe OMPtrace - a dynamic tracing mechanism that

combines traditional tracing with dynamic instrumentation and access to hard-

ware performance counters - to create a powerful tool for performance analysis

and optimization of OpenMP applications.

OMPtrace is built on top of the Dynamic Probe Class Library (DPCL)[2],

an object-based C++ class library and runtime infrastructure that exibly sup-

ports the generation of arbitrary instrumentation, without requiring access to the

source code. DPCL allows the instrumentation of the OpenMP runtime systems,

providing the exibility to measure the overhead of initialization and �nalization

of parallel regions. For detailed analysis of the parallel behavior of the applica-

tion, OMPtrace data is, then, analyzed with the Paraver visualization tool[3]. To

demonstrate the power of OMPtrace and Paraver, we analyze the performance

of the Sweep3D application[4] as a case study.

The remainder of this paper is organized as follows. In Section 2 we briey

describe the main DPCL issues. In Section 3 we discuss the OMPtrace interface.

In Section 4 we present a case study where we describe the steps followed to

analyze the Sweep3D application and how OMPtrace and Paraver were useful

to identify potential improvements. Finally, our conclusions are summarized in

Section 5.

2 The Dynamic Probe Class Library

Traditionally, instrumentation systems have had to strike a balance between min-

imizing instrumentation overhead and maximizing the amount of performance

data captured. One approach to managing instrumentation overhead is to limit

both the number of events recorded and the size of those events. However, this

could mean that key events may not have been recorded. Likewise, if too much

instrumentation is inserted, the overhead may be so high that it is no longer

representative of the un-instrumented program's execution behavior.

Another challenge is that many instrumentation systems require that pro-

grams be re-compiled after being instrumented. While this is generally possible,

for large applications it can be time consuming. Even worse, for third party

libraries and applications users where the source code may not be available,

re-compiling will not be possible. An alternative is to allow a program to be

modi�ed while it is executing, and thereby eliminate the need to re-compile,

re-link, or re-execute the program.

Dynamic instrumentation provides the exibility for tools to insert probes

into applications only where it is needed. The Dynamic Probe Class Library,

developed at IBM, is an extension of the dynamic instrumentation approach,

pioneered by the Paradyn group at the University of Wisconsin[5]. DPCL is built

on top of the Dyninst Application Program Interface (API)[1]. Using DPCL,



a performance tool can attach to an application, insert code patches into the

binary and start or continue its execution. Access to the source code of the

target application is not required and the program being modi�ed does not need

to be re-compiled, re-linked, or even re-started.

DPCL provides a set of C++ classes that allows tools to connect, examine,

and instrument a spectrum of applications: single processes to large parallel ap-

plications. DPCL is composed of a client library, a runtime library, a daemon,

and a super-daemon. End user tools can be created with the client library. The

runtime library supports instrumentation generation and communication. The

daemon interfaces with the Dyninst library to instrument and manage user pro-

cesses; a super-daemon manages security and client connections to these DPCL

daemons. With DPCL, program instrumentation can be done at function entry

points, exit points, and call sites.

3 The OMPtrace

The integration of DPCL into OMPtrace is based on the fact that the IBM

compiler translates OpenMP directives into function calls. Figure 1 shows, as

an example, the compiler transformations for an OpenMP parallel loop. The

OpenMP directive is translated into a call to a function from the OpenMP

runtime library (\xlsmpParDoSetup"), which is responsible for thread manage-

ment, work distribution, and thread synchronization. The loop is transformed

into a function (\A@OL1" in the example in Figure1) that is called by each of the

OpenMP threads.

Since DPCL allows the installation of probes at function call entry and exit

points, as well as before and after a function call, the OMPtrace tool installs two

pairs of probes for each parallel region in the target application. As shown in

Figure 2 the �rst pair (DPCL probe (1)) is inserted before and after the call to

the OpenMP runtime library function, while the second pair (DPCL probe(2))

is inserted at the call entry and exit point of the parallel region. Given these

two pairs of probes, one can measure the overhead of starting and terminating a

parallel region. Additionally, a third pair of probes (DPCL probe (3)) is inserted

at the call entry and exit points of each function that contains an OpenMP

parallel region.

Figure 3 displays the startup procedure executed by OMPtrace. The tool

communicates with the DPCL daemon (1), which in turn acts on the application

binary (2). Probe installation (3) is executed in two steps. First, OMPtrace

requests the DPCL communication daemon to load the tracing module into

the target application. This module contains the functions that will be called

by the probes. Once the tracing module has been loaded, OMPtrace requests

the communication daemon to inserts the probes into the application. After

the probes are installed, OMPtrace starts the application. Notice that nothing

precludes OMPtrace from attaching to a running application and execute the

same procedure. We are considering this feature for future work.



Fig. 1. Compiler transformations for an OpenMP parallel loop.

Fig. 2. DPCL probes on functions that contain parallel regions.



Fig. 3. Application startup with OMPtrace.

Similarly, OMPtrace can be used to instrument locks that are used to en-

sure mutual exclusion in the application. In this case, dynamic instrumentation

is placed before and after the OpenMP functions that are called to handle the

locks, generating an event trace every time that a thread enters in one of the fol-

lowing four states: trying to acquire a lock, lock acquisition, starting to release

a lock, and lock release. This instrumentation is useful to measure lock over-

head, contention in critical sections, and the actual pattern of lock acquisition.

Since this instrumentation may introduce a signi�cant overhead, especially for

very small critical sections, it is only activated when speci�ed by the user with

command line ags when executing OMPtrace. It is our experience that even

in cases where the overhead is signi�cant, the information on the pattern and

interaction between threads that this tracing facility provides is very helpful to

improve the performance of the parallel program.

Another OMPtrace feature is the ability to automatically access hardware

counters. The IBM Power3 processor provides 8 counters, each one able to count

a number of hardware events. OMPtrace allows users to select any valid combi-

nation of hardware events, via an environment variable. By default, OMPtrace

uses a standard set of events to count instructions, oating point operations,

fused multiply adds (FMAs), and loads. When the hardware counters option is

activated, OMPtrace emits event records at the entry and exit of every instru-

mented point in the program, identifying the hardware events being collected and

for each event, the count between the current and the previous tracing point.

In order to avoid excessive overhead and reduce trace �le size for the default

analysis, this feature is also only activated via a command line ag.

One of the known weakness of hardware performance counters is that they

only provide raw counts, which does not necessarily help users to identify which

events are responsible for bottlenecks in the program performance. However,

Paraver has a very exible mechanism to compute and display a large number



of performance indices and derived metrics from the information emitted into

the trace by OMPtrace. Thus, the hardware counter information included in the

trace �le can be later processed by Paraver to generate a large number of perfor-

mance indices, which allows users to correlate the behavior of the application to

one or more of the components of the hardware. For example, Paraver can dis-

play as a function of time for a given routine (or interval) the quotient between

the number of L1 misses (as reported by the event at the exit of the routine)

and the duration of the routine. Indices such as L1 misses per second or oating

point operations per second can be visualized as a function of time. Addition-

ally, a second level of semantic functions can be obtained by combining (i.e.,

adding, dividing, etc.) the functions of time computed directly from the records

in the trace as stated above. We call this feature derived windows. For example,

starting with a window that looks at \cycles" to compute the number of cycles

for each function (or interval) and other window that looks at the \instructions"

it is possible to derive an IPC window by dividing those two windows. This

derived window will display the actual Instructions per Cycle obtained for each

interval of the application, which can be useful for example to compare with the

theoretical limit of the machine (4 issue in the Power3 case).

An interesting way to use these derived windows is to build performance

models of the processor and try to explain the performance of the application

based on these models. For example, one can compute the theoretical IPC limit

considering just the number of oating point operations and the number of

misses by taking into account that only two FPUs are available and assuming a

certain miss cost. Comparing this model with the observed IPC gives an insight

on whether the performance is limited by the number of FPUs or by the cost of

the cache miss.

In addition to installing these dynamic probes, OMPtrace accepts static in-

strumentation placed by the user, for tracing of other functions or code regions

in the program. During program execution, OMPtrace generates trace records.

These records contain absolute times from the activation of the instrumented

points in the program during the parallel execution, as well as, the information

gathered for these points (for example, data from hardware performance coun-

ters). Each record represents an event or activity associated to one thread in the

system. At the end of execution, these traces are combined into a single Paraver

trace �le, in order to convert these \punctual" events into \interval values".

4 Case Study

In this section we describe the steps followed to analyze an application and

how OMPtrace and Paraver were useful to identify potential improvements. We

observe that performance tuning of any large application is in general a never-

ending task, with new potential improvements arising just after a previous one

has been implemented. Thus, our intent was not to optimize the performance

of the application to the utmost possible level. Instead, we focused on the way

Paraver was helpful in the process.



In this case study, we used the US DOE ASCI Sweep3D benchmark, which

uses a multidimensional wavefront algorithm for \discrete ordinates" determin-

istic particle transport simulation. Figure 4 displays the Sweep3D major data

structures and the iteration space. The core computation presents reductions in

all directions (i, j, k, and m); thus posing some problems to parallelization. To

solve these problems, Sweep3D bene�ts from multiple wavefronts in multiple di-

mensions, which are partitioned and pipelined on a distributed memory system.

The three dimensional space is decomposed onto a two-dimensional orthogo-

nal mesh, where each processor is assigned one columnar domain, as shown on

Figure 5(a). Sweep3D pipelines the K dimension, exchanging messages between

processors as wavefronts propagate diagonally across this 3D space in eight di-

rections.

Fig. 4. Sweep3D major data structures and iteration space.

Within each MPI process domain further decomposition of work among sev-

eral threads can be achieved with OpenMP. The approach is to parallelize the

execution of the planes of a diagonal wavefront that traverses the sub-cube com-

puted by each MPI process. Each such plane is inherently parallel as each of its

points contributes to a di�erent reduction in each of the i, j, and k directions,

as shown in Figure 5(b). This is nevertheless at the expense of additional index

computations and triangular loop trip count, which causes signi�cant overhead

both in terms of index computations and of OpenMP run time library overhead.

Figure 6 displays the computational ow of Sweep 3D in its original version,

which we will refer here as \diag" version. However, as an alternative approach



Fig. 5. (a) MPI parallelization structure and (b) sub-cube diagonal parallelization

structure with OpenMP.

described in the source distribution, the \do idiag" and \do jkm" loops, shown

in Figure 6, can be replaced by a tripled nested loop (\do m", \do k", and

\do j"), which we will refer here as \mkj" version.

Our trace collection and analysis was performed with a small problem size,

using a cube of dimensions 50�50�50, running on one SP Nighthawk II node

with 16 375 MHz Power3+ processors. The performance observations were then

validated running a mixed MPI/OpenMP code with a larger problem size, using

a cube of dimensions 300�300�100, on 12 SP Nighthawk I Nodes, each node

with 8 222 MHz Power3 processors.

As described above, the original MPI version is parallelized in two levels,

along the \I" and \J" dimensions. Table 1 presents the elapsed times in sec-

onds for the MPI versions corresponding to di�erent partitioning of the global

iteration space, and the elapsed time for the OpenMP \diag" version. The �rst

number in the decomposition indicates the number of processors used for the

partitioning across the I dimension, while the second number indicates the num-

ber of processors for the J dimension.

We observed that on 6 processors, the best MPI decomposition ran in 3.69

seconds, while the OpenMP version ran in 7.78 seconds. The OpenMP per-

formance with 12 processors was almost three times worst than the best MPI

performance. In order to identify the reasons for this performance di�erence, we

obtained two sets of trace of the MPI and the OpenMP versions, one using the

default set of hardware counters to measure communication and synchronization

overheads, and the other counting cache misses (level 1 and 2) and TLB misses

to investigate locality issues.



DO iq=1,8 ! octants

DO mo=1,mmo ! angle pipelining loop

DO kk=1,kb ! k-plane pipelining loop

RECV E/W ! recv block I-inflows

RECV N/S ! recv block J-inflows

DO idiag=1,jt+nk-1+mmi-1 ! JK-diagonals with MMI pipelining

DO jkm=1,ndiag ! I-lines on this diagonal

j,k,m = f(idiag,jkm) ! map to j, k, and m indices

DO i=1,it ! source (from Pn moments)

ENDDO

DO i=i0,i1,i2 ! Sn eqn

ENDDO

DO i=1,it ! flux (Pn moments)

ENDDO

DO i=1,it ! DSA face currents

ENDDO

ENDDO

ENDDO

SEND E/W ! send block I-outflows

SEND N/S ! send block J-outflows

ENDDO

ENDDO

ENDDO

Fig. 6. Sweep 3D control ow

NB Domains OpenMP time Decomposition MPI time

1x6 3.97

6 7.78 2x3 3.69

3x2 3.71

6x1 4.47

1x12 3.50

2x6 2.74

12 6.55 3x4 2.21

4x3 2.25

6x2 2.97

12x1 3.98

Table 1. Elapsed time in seconds for \diag", running the small problem with OpenMP

and with MPI.



Using Paraver to compute the total useful computation, we observed that

both versions were loosing a similar percentage of time in synchronization and

communication. The percentage of time inside numerical computation routines

was around 65% for both runs. In the case of OpenMP this low percentage

was partially due to the �ne granularity of the triangular loops, and because it

still executed some sequential computation, since only the major computational

loop was parallelized. On the other hand, we observed that the OpenMP version

had less L1 misses (2137 per ms) and TLB misses than the MPI version (4153

L1 misses per ms), but much more L2 misses (1356 per ms for the OpenMP

version versus only 133 per ms for the MPI version). The rate of L2 misses

per millisecond for one traversal of the 3D iteration space in \diag" is shown

in Figure 7 and Figure 8 for the OpenMP and MPI versions respectively. In

these �gures, darker gray (blue) represents large values, while white (green)

corresponds to low values. The areas with low values in Figure 7 correspond to

intervals where the threads are waiting for work or synchronizing. Hence, our

optimization e�orts concentrated on improving locality of the OpenMP version

and minimizing coherence invalidations.

Fig. 7. L2 misses per milliseconds for the OpenMP execution of \diag".

Fig. 8. L2 misses per milliseconds for the MPI execution of \diag".



Taking into account that shared memory is inherently more eÆcient than

message passing for �ne grain synchronization, we implemented an OpenMP

parallel version based on the \mkj" version, where the outer loop was parallelized

and the internal precedence was enforced by some synchronization mechanism.

Two approaches were implemented. The �rst was the version \ccrit", which uses

the CRITICAL OpenMP directive for the implementation of the reduction. The

result was a fairly high contention on the lock, a behavior that could be visualized

with Paraver, as shown in Figure 9, which displays the behavior of the critical

section access. The long regions in gray (red) correspond to the time threads are

trying to get a lock that is already taken. The dark (blue) periods correspond

to threads using the lock. White (green) is when a thread releases the lock and

light gray (light blue) corresponds to execution outside of the critical section. As

can be observed, the sequence of accesses does not follow a speci�c pattern, and

the waiting time to obtain a lock has a large variance. Using the quantitative

analysis module of Paraver we measured the average waiting time to be 170

microseconds with a standard deviation of 172.

Fig. 9. Lock access pattern in the \ccrit" version.

The second synchronization mechanism, which we refer to \cpipe", was im-

plemented based on shared arrays and busy waiting. In this version the itera-

tions of the parallelized loop (\do m") are interleaved across threads. When a

thread �nalizes its part of computation involved in the reduction it signals to

the following thread to continue with its part. In this approach, the reductions

are executed in sequential order (although di�erent threads compute di�erent

parts). Thus, in this case, since the sequential order of the computation of the

reductions are preserved, the numerical results are identical to the sequential

execution, independently of the number of processors used in the parallel com-

putation. This is an important advantage compared to the \ccrit" version, where

the critical sections used to assure atomicity of the reduction updates do not pre-

served their order; thus resulting in numerical di�erences between runs. In this



version we observed that the synchronization overhead was very low and a fairly

good pipelining was achieved.

A comparison of the single processor run of the \diag" and \mkj" versions

showed that the \mkj" version was signi�cantly slower. Using Paraver traces with

the sequential application we observed that the �rst, third and fourth \do i"

loops were touching the variables \flux", \src", and \face" and incurred most

of the level 2 cache misses. However, analyzing the source code, it could be

observed that interchanging the \do m" loop inwards would reduce misses in

the \do i" loops. Besides the locality problems, parallelizing the m dimension

also has the problem of the small trip count of the loop (only 6), which limits

parallelism. Taking into account data locality and trip count considerations de-

scribed above, we interchanged the loops, creating the version \kjmi". In order to

achieve good pipelining overlap in this version, the \do k" loop was parallelized

with SCHEDULE(STATIC,1), which means totally interleaved. This causes matrix

\Phikb" to be circulated between processors for each k, generating level 2 cache

invalidations and a slightly higher miss ratio than the MPI version. Thus, in or-

der to increase the reuse of \Phikb" we introduced a �nal modi�cation (version

\Kjkmi") where the k loop was strip-mined and interchanged according to the

version name.

version 1 2 3 4 5 6 8 9 10 11 12 13 14 15 16

ccrit 28.26 24.41 26.84 26.47 29.28 30.34 30.43

cpipe 25.63 18.45 13.01 12.53 10.06 7.67 7.76

diag 17.28 13.09 11.40 9.64 8.50 7.78 6.55

kjmi 14.86 10.01 7.35 5.82 4.89 4.34 3.62 3.38 3.09 3.04 2.88 2.69 2.69 2.64 2.53

Kjkmi 14.91 8.47 6.35 4.91 4.24 3.58 2.90 2.81 2.78 2.65 2.29 2.22 2.16 2.19 2.15

Table 2. Elapsed time in seconds for the di�erent OpenMP versions.

A performance summary of the di�erent OpenMP versions of the program,

running the small problem size is presented in Table 2. The numbers show the

ineÆciency and lack of scalability of the \ccrit" version. The overhead of the

mutex lock and unlock needed to protect the critical section can be observed,

when comparing the times for just one thread in the \ccrit" and \cpipe" ver-

sions. The huge contention at the lock shown in Figure 9 causes the scalability

problems.

Although \cpipe" performed better than \ccrit", when comparing to the

other three versions we observe that \cpipe" also had poor locality behavior,

and scalability problems. These problems occur mainly because the parallel loop

on \m" has only an iteration count of 6, which results in a poor pipelining.

The scalability of \diag" is limited, as mentioned above, due to the very high

number of L2 misses caused by false sharing and the variable trip count of the

parallelized loops. The overhead of opening and closing such parallel loops with



very small trip counts for the diagonal planes at the corners of the cube also

contributes to the poor scalability of this version.

The two �nal versions show much better behavior for just one thread, an

e�ect that not only bene�ts the OpenMP code, but also the MPI. Scalability is

fair, and the performance achieved is equivalent to that of pure MPI as reported

in Table 1. In some cases, as \Kjkmi" running 6 threads, as well as in other

experiments we have performed with larger problem sizes, we observed that the

OpenMP versions were marginally better than the pure MPI version.

MPI Threads

Tasks Version 0 2 3 4 5 6 7 8

12 kjmi 56.61 55.33 52.96 40.55

Kjkmi 56.62 57.00 56.70 57.14

24 kjmi 49.87 40.39

Kjkmi 65.69 45.61

48 kjmi 39.41

Kjkmi 45.69

84 diag 41.68

96 diag 40.93

Table 3. Elapsed time in seconds, for the large problem size, running on 12 IBM SP

Nighthawk I Nodes.

Table 3 presents the best elapsed time over two runs using the larger problem

size (300�300�100) on 12 IBM SP Nighthawk I Nodes at Lawrence Livermore

National Laboratory. Notice that this table shows only a few combinations of

MPI tasks and OpenMP threads that were selected from the large space of

possible con�gurations. Also, for each MPI task, only one decomposition was

considered. Therefore, based on the results from the small problem size, where we

observed that the MPI performance is heavily dependent on the decomposition,

one should be aware that the MPI decomposition chosen for these experiments,

was based on the observations from the small problem size, but the times might

not necessarily represent the best MPI performance for this problem size.

We observe that when running the large problem size with all 96 processors,

we were able to con�rm the analysis derived from the small problem size for the

mixed MPI/OpenMP version of \kjmi". This version performed slightly better

than the pure MPI version with all three combinations of tasks and threads

(namely, 48/2, 24/4, and 12/8). On the other hand, the performance of the

\Kjkmi" version did not perform as well as expected, and in the only situation

where its performance was comparable to the \kjmi" version, it did dot scale

well with more than 5 threads. Thus, more analysis is necessary to understand

its performance behavior.

When running the mixed mode approach, we observed some conicts in the

scheduling of the two parallelization strategies (MPI and OpenMP). This prob-



lem can be observed in Figure 10, which shows for each thread, the pattern of

computation from the iterations of the parallel loop, when running \kjmi" with

the small problem size, using 2 MPI tasks and 8 OpenMP threads per task. In

this �gure, where each dark (blue) area between two ags corresponds to one

iteration of the loop, we can observe an unbalance between threads inside of

each MPI task. The reason for this unbalance is due to the MPI pipelining that

was set to have \k" dimension of 10 planes. Hence, the parallel loop had only

10 iterations, and when scheduling such number of iterations among 8 threads,

two of then will perform two iterations, while the other six threads will perform

only one iteration and then wait for the �rst two to �nish.

Fig. 10. Scheduling of the OpenMP loop iterations

Therefore, another important observation of this experiment was that when

mixing di�erent programming models, it is of key importance to analyze the

scheduling decisions taken by the di�erent parallelization strategies. It is fairly

easy for these strategies to interfere with each other, and without an analysis

tool such as OMPtrace and Paraver it may be diÆcult to understand the e�ects

in performance.



5 Conclusions

In this paper we described OMPtrace, a dynamic tracing mechanism that com-

bines traditional tracing with dynamic instrumentation and access to hardware

performance counters to create a powerful tool for performance analysis and op-

timization of OpenMP applications. Performance data collected with OMPtrace

is used as input to the Paraver visualization tool for detailed analysis of the

parallel behavior of applications.

The usefulness of OMPtrace and the power of Paraver for tuning and opti-

mizing OpenMP applications was illustrated in a case study with the US DOE

ASCI Sweep3D benchmark. We analyzed the performance of a small problem

size of Sweep3D, running on a single IBM SP node with 16 processors, and val-

idated the performance observations and code optimizations, running a mixed

MPI/OpenMP version of the code, with a larger problem size, on 12 IBM SP

Nodes with 8 processors each.

The performance of the original OpenMP version was three times slower

than the MPI version when running on 12 processors of a single IBM SP node,

but when running the optimized version with the larger problem size on 96

processors, the mixed MPI/OpenMP version performed slightly better than the

pure MPI version for all three combinations of MPI tasks and OpenMP threads

used (48 task and 2 threads, 24 tasks and 4 threads, and 12 tasks and 8 threads).

We notice that the two dimensional MPI parallelization and the correspond-

ing combinations of possible decompositions had an important e�ect on the

performance of the MPI program. In OpenMP there is only one dimensional

parallelization and it would be interesting to experiment with nested OpenMP

parallelism.

Finally, we observe that there are still several issues, such as memory man-

agement and scheduling conicts, that remain as challenges for optimization of

the mixed MPI/OpenMP application.

References

1. B. R. Buck and J. K. Hollingsworth. An API for Runtime Code Patching. In Journal

of High Performance Computing Applications, 14(4):317{329, Winter 2000.
2. L. DeRose and T. H. Hoover Jr. and J. K. Hollingsworth The Dynamic Probe Class

Library - An Infrastructure for Developing Instrumentation for Performance Tools.

In Proceedings of 2001 International Parallel and Distributed Processing Symposium,

April 2001.
3. European Center for Parallelism of Barcelona (CEPBA). Paraver - Parallel

Program Visualization and Analysis Tool - Reference Manual, November 2000.

http://www.cepba.upc.es/paraver.
4. K. R. Koch, R. S. Baker, R. E. Alcou�e. Solution of the First-Order Form of the 3-D

Discrete Ordinates Equation on a Massively Parallel Processor. In Trans. Amer.

Nuc. Soc. 65(198), 1992.
5. B. P. Miller, M. D. Callaghan, J. M. Cargille, J. K. Hollingsworth, R. B. Irvin, K. L.

Karavanic, K. Kunchithapadam, and T. Newhall. The Paradyn Parallel Performance

Measurement Tools. In IEEE Computer, 28(11):37{46, November 1995.


